

Ideas to Observations: Tools for the Next Decade

Scientist's Expert Assistant Simulation Facility

Sandy Grosvenor, Jeremy Jones, Anuradha Koratkar, Connie Li, David Matusow, Karl Wolf

Introduction

- MWhat is the Scientists' Expert Assistant (SEA)?
- What is the SEA Simulation Facility?
- Why the SEA Simulation Facility?
- Current status of the SEA Simulation Facility
- Coming in next 18 months

What is the Scientists' Expert Assistant (SEA)?

Putting the "eye" back into observation planning

- Software interface to guide scientists in the preparation of their observing proposal
- Proof of concept for new approaches, reduces risks and costs for follow-on work
- Initially funded by NGST
- Adopted by STScI for production use

Now funded by AISRP and Code 588

- Expanding to more observatories: SOFIA, SIRTF, ESO, KRONOS
- Developing simulation facility (SSF)

Multiple Images Example 1: SN1987A from STIS

Multiple Images Example 2: Change color/contrast

Multiple Images Example 3: SN1987A from DSS

Multiple Images Example 4: Zoom in, DSS overs STIS image

Multiple Images Example 5: Set DDS Color and Contrast

Multiple Images Example 6: Lower Opacity to Blend Images

Multiple Images Example 7: Lower Opacity Further

Multiple Images Example 8: Zoom in tighter on STIS image

Multiple Images Example 9: Zoom back out, placement good

Multiple Images Example 10: Add third image from ESO

Multiple Images Example 11: Drop opacity way down

Multiple Images Example 12: Zoom in to show ring again

Multiple Images Example 13: Change opacity ...

Multiple Images Example 14: more yet, note slight offset

Lessons Learned So Far (especially for NVO)

- - + Quick early feedback is invaluable
- Promote true teamwork between CS and astronomers
 - Look for an Alpha User- scientist that is an integral member of the project team
- M Visual interactive tools are here to stay
- Like R&D into instruments, R&D into tools is vital
- Don't give up on collaborations
 - Software capabilities make true reuse feasible
 - Software budgets make reuse essential
 - "Face time" is important, leverage conference time/travel

What is SEA Simulation Facility (SSF)?

- Breakdown observation into elements of the light path
 - Standard, simple interface to encapsulate underlying models
 - Interfaces are model/platform/observatory independent
- A Pipeline style GUI to allow easy manipulation
 - + Edit component properties, place visualization modules anywhere, swap components
- Visualizations installed anywhere in the pipeline

Why a Simulation Facility?

- For Observers to effectively determine how various parameters affect their data and their scientific objectives.
 - "Phase 0" tools for initial "framing" of observations
 - Validate proposed observations ahead of time
 - New complex instruments driving need for newer visualization tools
- For Observatory Staff to characterize and understand the telescope/ instrument/ detectors.
 - Better analysis of instruments with fewer calibrations
- For the Archive User to understand the quality and limitations of an archival image.

SSF Design Objectives

- Test interactive and innovative ways to look at a proposed observation
- Scalable In the back-end models and in the frontend views
- Layer the complexity simple on top, with access to "gory details"
- Pluggable, generic programming interface
 - + Non-observatory specific
 - Multi-platform
 - Distributed if needed/desired
- Compatible with early SEA versions
 - R&D successes should benefit all users, failures penalize none

Current Status of SSF

- // Initial design / architecture done
- Now implementing first build
- Starting to work with ESO
 - * ESO has existing library of simulation models
 - SEA has strength/expertise in visualization software

SSF Interface – Early Preview

Coming in Next 18 Months

- Complete pipeline GUI for manipulating pipeline elements
- Complete "generic" programming interface for pipeline elements
- Develop interfaces/models for several astronomical and instrument/detector models
- Prototype visualization approaches
 - Emphasis on user interactivity
 - Trials with 3D imaging and layering
 - Fully expect that some will bomb, others will succeed

Observing Needs to Become an Integrated Full Circle

// Ideas to Observations to Archives to Ideas

Further information: http://aaaprod.gsfc.nasa.gov/SEA